Extrinsic Radius Pinching for Hypersurfaces of Space Forms
نویسنده
چکیده
We prove some pinching results for the extrinsic radius of compact hypersurfaces in space forms. In the hyperbolic space, we show that if the volume of M is 1, then there exists a constant C depending on the dimension of M and the L-norm of the second fundamental form B such that the pinching condition tanh(R) < 1 ||H||∞ + C (where H is the mean curvature) implies that M is diffeomorphic to an n-dimensional sphere. We prove the corresponding result for hypersurfaces of the Euclidean space and the sphere with the L-norm of H , p ≥ 2, instead of the L-norm.
منابع مشابه
Extrinsic Radius Pinching in Space Forms of Nonnegative Sectional Curavture
We first give new estimates for the extrinsic radius of compact hypersurfaces of the Euclidean space R and the open hemisphere in terms of high order mean curvatures. Then we prove pinching results corresponding to theses estimates. We show that under a suitable pinching condition, M is diffeomorphic and almost isometric to an n-dimensional sphere.
متن کاملSpacelike hypersurfaces in Riemannian or Lorentzian space forms satisfying L_k(x)=Ax+b
We study connected orientable spacelike hypersurfaces $x:M^{n}rightarrowM_q^{n+1}(c)$, isometrically immersed into the Riemannian or Lorentzian space form of curvature $c=-1,0,1$, and index $q=0,1$, satisfying the condition $~L_kx=Ax+b$,~ where $L_k$ is the $textit{linearized operator}$ of the $(k+1)$-th mean curvature $H_{k+1}$ of the hypersurface for a fixed integer $0leq k
متن کاملPinching of the First Eigenvalue of the Laplacian and almost-Einstein Hypersurfaces of the Euclidean Space
In this paper, we prove new pinching theorems for the first eigenvalue λ1(M) of the Laplacian on compact hypersurfaces of the Euclidean space. These pinching results are associated with the upper bound for λ1(M) in terms of higher order mean curvatures Hk. We show that under a suitable pinching condition, the hypersurface is diffeomorpic and almost isometric to a standard sphere. Moreover, as a...
متن کاملA Remark on Almost Umbilical Hypersurfaces
In this article, we prove new stability results for almost-Einstein hypersurfaces of the Euclidean space, based on previous eigenvalue pinching results. Then, we deduce some comparable results for almost umbilical hypersurfaces.
متن کاملSphere Rigidity in the Euclidean Space Julien
In this article, we prove new stability results for almost-Einstein hypersurfaces of the Euclidean space, based on previous eigenvalue pinching results. Then, we deduce some comparable results for almostumbilic hypersurfaces and new characterizations of geodesic spheres.
متن کامل